Future Evolution of Nearby Large-Scale Structure in a Universe Dominated by a Cosmological Constant

نویسندگان

  • Kentaro Nagamine
  • Abraham Loeb
چکیده

We simulate the future evolution of the observed inhomogeneities in the local universe assuming that the global expansion rate is dominated by a cosmological constant. We find that within two Hubble times (∼ 30 billion years) from the present epoch, large-scale structures will freeze in comoving coordinates and the mass distribution of bound objects will stop evolving. The Local Group will get somewhat closer to the Virgo cluster in comoving coordinates, but will be pulled away from the Virgo in physical coordinates due to the accelerated expansion of the Universe. In the distant future there will only be one massive galaxy within our event horizon, namely the merger product of the Andromeda and the Milky Way galaxies. All galaxies that are not gravitationally bound to the Local Group will recede away from us and eventually exit from our event horizon. More generally, we identify the critical interior overdensity above which a shell of matter around an object will remain bound to it at late times.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Future Evolution of the Intergalactic Medium in a Universe Dominated by a Cosmological Constant

We simulate the evolution of the intergalactic medium (IGM) in a universe dominated by a cosmological constant. We find that within a few Hubble times from the present epoch, the baryons will have two primary phases: one phase composed of low-density, low-temperature, diffuse, ionized gas which cools rapidly with cosmic time due to adiabatic exponential expansion, and a second phase of high-den...

متن کامل

جوابهای کیهانشناسی معادلات برانس- دیکی با ثابت کیهانشناسی

  In this paper, the analytical solutions of Brans-Dicke (B-D) equations with cosmological constant are presented, in which the equation of state of the universe is P=mÙ° ρ , under the assumption φRn=c between the B-D field and the scale factor of the universe. The flat (K=0) Robertson- Walker metric has been considered for the metric of the universe. These solutions are rich in the sense that ...

متن کامل

Large-Scale Structure in the Distribution of Galaxies as a Probe of Cosmological Models

The last 20 years have seen an explosion in our understanding of the large-scale distribution and motions of galaxies in the nearby universe. The field has moved from a largely qualitative, morphological description of the structures seen in the galaxy distribution, to a rich and increasingly rigorous statistical description, which allows us to constrain cosmological models. New surveys just no...

متن کامل

Bulk Viscous Bianchi Type VI0 Cosmological Model in the Self-creation Theory of Gravitation and in the General Theory of Relativity

In the second self-creation theory of gravitation and in the general theory of relativity, Bianchi type VI0 cosmological model in the presence of viscous fluid is studied. An exact solution of the field equations is given by considering the cosmological model yields a constant decelerations parameter q=constant and the coefficients of the metric are taken as A(t)=[c1t+c<su...

متن کامل

ar X iv : a st ro - p h / 01 01 36 9 v 2 2 5 Ja n 20 01 Large scale geometry and evolution of a universe with radiation pressure and cosmological constant

In view of new experimental results that strongly suggest a non-zero cosmological constant, it becomes interesting to revisit the Friedman-Lemâıtre model of evolution of a universe with cosmological constant and radiation pressure. In this paper, we discuss the explicit solutions for that model, and perform numerical explorations for reasonable values of cosmological parameters. We also analyse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002